. ${ }^{\text {a }}$ (LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034		
M.Sc. DEGREE EXAMINATION - MATHEMATICS		
-	THIRD SEME	
	MT 3811 -	
Date: 08/11/2013 Time : 1:00-4:00	Dept. No.	Max. : 100 Marks

Answer all the questions.

1. a) Let G be a region. Show that any analytic function $f: G \rightarrow \mathbb{C}$ such that $|f(z)| \leq|f(a)| \forall z \in G$ is constant.

OR
b) State and prove Fundamental theorem of Algebra.
c) State and prove Goursat's theorem.

OR
d) State and prove homotopic version of Cauchy's theorem.
2. a) Prove that any differentiable function f on $[a, b]$ is convex if and only if f^{\prime} is increasing. OR
b) State and prove Schwarz lemma.
c) State and prove Arzela Ascoli theorem.

OR
d) State and prove Riemann mapping theorem.
3. a) Let $\operatorname{Re} z_{n}>0$, for all $n \geq 1$. Then prove that $\prod_{k=1}^{\infty} z_{k}$ converges to a complex number different from zero if and only if $\sum_{k=1}^{\infty} \log z_{k}$ converges.

OR
b) Show that $\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$.
c) (i) If $\operatorname{Re} z>0$ then prove that $\Pi(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$.
(ii) State and prove Weierstrass factorization theorem.

OR
d) (i) State and prove Bohr-Mollerup theorem.
(ii) State and prove Euler's theorem
4. a) State and prove Jensen's formula.

> OR
b) Let f be an entire function of finite order. Then prove that f assumes each complex number with one possible exception.
c) State and prove Mittag-Leffler's theorem.

OR
d) If f is an entire function of finite order λ, then prove that f has finite genus $\mu \leq \lambda$.
5. a) Prove that an elliptic function without poles is a constant.

OR
b) Prove that $\wp(z)$ is doubly periodic.
c) (i) Prove that a discrete module consists either of zero alone, of the integral multiples $n w$ of a single complex number $w \neq 0$ or of all linear combinations $n_{1} w_{1}+n_{2} w_{2}$ with integral coefficients of two numbers w_{1}, w_{2} with non real ratio $\frac{w_{2}}{w_{1}}$.
(ii) Show that $\left|\begin{array}{ccc}\wp(z) & \wp^{\prime}(z) & 1 \\ \wp(u) & \wp^{\prime}(u) & 1 \\ \wp(u+z) & \wp^{\prime}(u+z) & 1\end{array}\right|=0$
d) (i) Derive Legendre's relation.
(ii) State and prove the addition theorem for the Weierstrass \wp function.

